

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY 9701/33

Paper 3 Advanced Practical Skills 1

May/June 2016

MARK SCHEME

Maximum Mark: 40

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	33

Question	Indicative material	Mark	Total
1 (a)	I Two burette readings and titre value given for the rough titre and initial and final burette readings for two (or more) accurate titrations	1	
	II Titre values recorded for accurate titrations and Appropriate headings for the accurate titration table and cm³ units. • initial/start burette reading/volume / value • final/end burette reading/volume / value • titre or volume/FA 3 and used/added • unit: / cm³ or (cm³) or in cm³ (for each heading)	1	
	 III All accurate burette readings are to the nearest 0.05 cm³. Do not award this mark if: 50(.00) is used as an initial burette reading more than one final burette reading is 50.(00) any burette reading is greater than 50.(00) there is only one accurate titration. 	1	
	 IV There are two uncorrected accurate titres within 0.10 cm³ Do not award this mark if, having performed two titres within 0.10 cm³, a further titration is performed which is more than 0.10 cm³ from the closer of the initial two titres, unless a further titration, within 0.10 cm³ of any other, has also been carried out. Do not award the mark if any "accurate" burette readings (apart from initial 0 cm³) are given to zero dp. 	1	
	 V, VI and VII Examiner rounds any burette readings to the nearest 0.05 cm³, checks subtractions and then select the "best" titres using the hierarchy: two (or more) accurate identical titres, then two (or more) accurate titres within 0.05 cm³, then two (or more) accurate titres within 0.10 cm³, etc. These best titres should be used to calculate the mean titre, expressed to nearest 0.01 cm³. 	3	
	Examiner calculates the difference ($\delta)$ between the mean titres obtained by the candidate and the Supervisor.		
	Accuracy marks are awarded as shown.		
	Award V , VI and VII for $\delta \le 0.20$ (cm ³) Award V and VI for $0.20 < \delta \le 0.40$ (cm ³) Award V , only, for $0.40 < \delta \le 0.80$ (cm ³)		
	7. mana 2, omy, for onto 40 % onto (om)		[7]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	33

Question	Indicative material	Mark	Total	
(b)	 Candidate must take the average of two (or more) titres that are within a total spread of not more than 0.20 cm³. Working / explanation must be shown or ticks must be put next to the two (or more) accurate readings selected. The mean should be quoted to 2 dp, and be rounded to nearest 0.01 cm³. Two special cases, where the mean need not be to 2 dp: • Allow mean expressed to 3 dp only for 0.025 or 0.075 (e.g. 26.325 cm³) • Allow mean expressed to 1 dp, if all accurate burette readings were given to 1 dp and the mean is exactly correct. (e.g. 26.0 and 26.2 = 26.1 is allowed) (e.g. 26.0 and 26.1 = 26.1 is wrong – should be 26.05) Note: the candidate's mean will sometimes be marked correct even if it was different from the mean calculated by the Examiner for the purpose of 			
	assessing accuracy.		[1]	
(c) (i)	$(1.06/40) \times 4 = 0.106$	1		
(ii)	n(NaOH) = 0.106 × (25/1000) = 0.00265 and			
. ,	(iii) n(HC1) = 0.00265			
(iv)				
	concentration FA 2 = concentration FA 3 \times 10	1		
	All answers correct to 3 or 4 sf (minimum of 3 parts attempted)	1	[5]	
Question 1			[13]	
2 (a)	 Table for results with Unambiguous headings and correctly displayed units Balance readings recorded to same no of dp One or two measuring cylinder readings recorded (does not have to include volume collected) Unit: / g or (g) or in g (for each heading), allow grams/grammes for g) and / cm³ or (cm³) or in cm³ (for each heading) Calculates volume of gas/mass FA 4 to 3 sf. 	1		
	Calculated value within 20% of supervisor value	1	[2]	
(b) (i)	Correctly calculates • n(gas) = correct vol gas ÷ 24 000 to minimum 2 sf and • same number of moles of M ₂ CO ₃			
(iii)	$M_{\rm r}$ = correct mass from (a) ÷ (ii)	1		
. ,				

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	33

Question	Indicative material	Mark	Total
(iv)	$A_{\rm r} = (M_{\rm r} - 60)/2$ to minimum 2 sf	1	
	Group 1 element identified as one with the closest A_r and an explanation e.g as it is the nearest	1	[4]
(c) (i)	% error = (1×100) /vol gas collected (if only volume collected shown in (a)) or (1×100) /final reading (when initial reading is zero) or (2×100) /vol gas collected (if 2 readings)	1	
(ii)	Reason: gas dissolves (in water/solution)/reacts with water/water absorbs CO ₂		
	Modification: use a gas syringe/saturate water with carbon dioxide/use hot water/use less water in tub/use smaller volume of more concentrated acid/use oil (other non-aqueous solvent) instead of water	1	
	Reason: gas escapes before stopper inserted/stopper not inserted quickly enough.	1	
	Modification: viable means of keeping solid and acid separate before being added/use larger lumps of solid/use more (excess) of a lower concentration of acid	1	[5]
Question 2		<u> </u>	[11]

Page 5			Paper
	Cambridge International AS/A Level – May/June 2016	9701	33

FA 5 is HCO_2H ; **FA 6** is CH_3CO_2H ; **FA 7** is C_2H_5OH ; **FA 8** is $C_6H_{12}O_6$; **FA 9** is $Zn(NO_3)_2.6H_2O$; **FA 10** is $NaNO_3$

		FA '	10 is NaNO₃			
(a) (i)	FA 5	FA 6	FA 7	FA 8		
	Fizz/bubbles/ effervescence	Fizz/bubbles/ effervescence	no change	no change		
	Gas turns limewater milky/cloudy white/white ppt/chalky	Gas turns limewater milky/cloudy white/white ppt/chalky	No reaction/no change	No reaction/no change		
	Silver/black/ dark grey and mirror/solid/ ppt	No reaction/ no change/no silver mirror	No reaction/no change/no silver mirror	Silver/black/ dark grey and mirror/solid/ ppt		
	Purple to colourless or solution / MnO ₄ -/ manganate (VII) decolourised/ disappeared	No reaction or remains/turns purple or pink	Purple to colourless or solution / MnO ₄ -/ manganate(VII) decolourised / disappeared	Purple to colourless or solution/ MnO ₄ -/ manganate (VII) decolourised/disappeared		
(ii)	(–)CO ₂ H/carbox	ylic acid			1	
(iii)	(–)CHO/aldehyd or alkene/C=C	e/alkanal			1	
(iv)	or	nic compound/renen electrophilic a	eduction of MnO_4^-/r	redox	1	
(v)	(-)OH/(1°/2°) all or alkene/C=C	cohol/alkanol/hy	droxy		1	
(vi) Add Na to give effervescence/hydrogen/gas which pops with lighted splint, or Add PC l ₅ /SOC l ₂ to give misty fumes/steamy fumes/HC l, or Add carboxylic acid AND (conc) sulfuric acid to produce fruity/sweet smell or if alkene in (v) Br ₂ decolourised/brown to colourless		1 nell	[9			

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	33

(b) (i)					
		FA 9	FA 10		
	NaOH	No marking points	for observations here		
	A1	Effervescence/fizz/ bubbles	Effervescence / fizz / bubbles		
		Fizz/gas/ammonia turns litmus blue	Fizz/gas/ammonia turns litmus blue		
	heat	 Any 2 from: Melts/dissolves/becomes liquid Condensation/steam/water vapour Brown gas/gas turns litmus red Gas relights glowing splint Solid turns yellow 	 Any 1 from: Bubbles Gas relights glowing splint Melts/dissolves and to yellow (liquid/solution) 	4	
(ii)	Nitrate /	nitrite		1	
(iii)	or Add (acid	ned acid and (observe) brown dified) potassium manganate as/decolourised for nitrite	-	1	
(iv)	No reacti	ion for either so anion in eacl	h is nitrate/NO ₃ -	1	[7]
Question 3				•	[16]